# NWIFCA Technical, Science and Byelaw Committee

10a

2<sup>nd</sup> August 2022: 10:00 a.m.

## MORECAMBE BAY COCKLE FISHERY REPORT 2022

# Purpose: To report on the cockle survey and inspections that inform the decision on Morecambe Bay cockle fisheries.

#### Recommendation:

- 1. To accept the conclusions of this report.
- 2. To approve that the cockle beds in Morecambe Bay remain closed for the rest of the closed season, and that from the 1<sup>st</sup> of September they remain closed under Byelaw 3 paragraph 15.

#### 1. Morecambe Bay Cockle 2022 Results

Outstanding survey reports for all surveyed Morecambe Bay cockle beds were finalised on the 28<sup>th</sup> of July and are provided in Annex 1 of this report. A summary of this year's survey results are provided in table 1.

 Table 1. Biomass calculations of size, undersize and combined biomass of cockles on Morecambe Bay

 cockle beds 2022. \*figures represent the max cockle biomass

| Cockle bed                    | Date survey       | Area | Size cockle<br>(tonnes) | Undersize<br>cockle<br>(tonnes) | Total cockle<br>biomass<br>(tonnes) |
|-------------------------------|-------------------|------|-------------------------|---------------------------------|-------------------------------------|
| Aldingham<br>and<br>Newbiggin | 1st of July 2022  | 1063 | 1050                    | 315                             | 1365                                |
| Leven                         | 13th of July 2022 | 1047 | 500                     | 225                             | 725                                 |
| Flookburgh                    | 12th of July 2022 | 2240 | 850                     | 600                             | 1450                                |
| Warton<br>Sands               | 15th of June 2022 | na   | na                      | na                              | Na                                  |
| Middleton                     | 25th July 2022    | 771  | 350                     | 450                             | 800                                 |
| Pilling                       | 20th of July 2022 | 1461 | 1200                    | 400                             | 1600                                |

Table 2 provides yearly maximum cockle biomass figures from 2017 to 2022. This year, there is an estimated and 3950 tonnes of size cockle and 1990 tonne of undersize over 6582 hectares surveyed across Morecambe Bay. Compared to last year this shows a decrease in total max cockle biomass from 7415 tonnes to 5940 tonnes.

**Table 2**. The yearly biomass of figures for size, undersize and total biomass of cockles on Morecambe Bay cockle beds from 2017 to 2022. \*figures represent the max cockle biomass

| Year | Area<br>(ha) | Size cockle<br>(tonne) | Undersize<br>cockle (tonne) | Total cockle<br>(tonne) | Beds opened                                  |
|------|--------------|------------------------|-----------------------------|-------------------------|----------------------------------------------|
| 2017 | 5177         | 4230                   | 6980                        | 11210                   | Flookburgh<br>Leven<br>Pilling               |
| 2018 | 6088         | 7000                   | 12140                       | 19140                   | Flookburgh<br>Leven<br>Pilling<br>Newbigging |
| 2019 | 6705         | 4635                   | 12900                       | 17535                   | Flookburgh<br>Leven<br>Pilling<br>Newbigging |
| 2020 | 8085         | 12580                  | 3975                        | 16555                   | Flookburgh<br>Leven<br>Pilling<br>Newbigging |
| 2021 | 7089         | 6450                   | 955                         | 7415                    | Pilling                                      |
| 2022 | 6582         | 3950                   | 1990                        | 5940                    | TBC                                          |

Figure 1 shows the data from table 1 in graphical form. Both the overall biomass and size cockle biomass is lower this year than the previous, there is a slight increase in undersize, though this is still low in comparison to previous years. There are significantly low levels of undersize cockle across all beds, which will make the basis for the following years size fishery once it has grown on.

There has been a 13,200 tonne decrease in the total biomass of all cockles since the peak in 2018. 2018 and 2019 looks like a good settlement year, which then grew to size to become available to the fishery in 2019 and 2020. Both the average density and total number of undersize since decreased each year, indicative of low levels of new settlement.



Figure 1. Annual Morecambe Bay cockle biomass calculations

Figure 2 shows the trend in maximum total cockle biomass over Morecambe Bay cockle beds from 2017 to 2022.

Figure 2. Total cockle biomass in Morecambe Bay from 2017 to 2022.



Figure 3 shows a breakdown of the total cockle biomass of each cockle bed in Morecambe Bay over the past 6 years. They all appear to show a general decreasing trend in total cockle biomass.



Figure 3. Trend in annual total cockle biomass for individual beds in Morecambe Bay since 2017.



Figure 4. Annual maximum density of cockle per m2 across Morecambe Bay cockle beds.

Figure 4 shows the maximum density of cockles per m2 across all Morecambe Bay cockle beds combined. The densities of individual beds are provided in Annex 2 of this report. This year, the maximum density of size is down from 81 per m<sup>2</sup> to 35 per m<sup>2</sup>. Undersize, is slightly up this year from 43 per m<sup>2</sup> to 52 per m<sup>2</sup>. There has been a significant decline in the density of both size and undersize cockles across the beds since the peak in 2018 and 2020. Less than 5mm cockle are not used in the undersize density or biomass figures due to the highly variable nature of survivability.

#### 2. Morecambe Bay cockle fishery recommendation considerations

Last year, NWIFCA recommended that all cockle beds be closed due to concerns over the very low cockle biomass and, in particular, the low amount of undersize stock available to grow on and support a fishery in the following year. After discussion with the Authority, tt was subsequently agreed that Pilling Sands cockle bed be opened subject to HRA.

This year, there is again concern over the further decrease in overall cockle biomass and density across the Bay. It must be noted that all figures are maximum estimates, and the true value may fall lower than those presented here.

As has been previously discussed, there are several additional considerations when proposing the opening or closing of a fishery, which as yet do not have established parameters:

- 1) Bird food requirements for SPA designated species
- 2) Minimum cockle density spawning requirements
- 3) Location of cockle brood stock for re-seeding
- 4) An agreed threshold limit beyond which the fishery will remain closed
- 5) Criteria for selecting which beds should open in the event of low stock numbers.

NWIFCA does not have an agreed minimum total cockle biomass for Morecambe Bay from which to recommend the opening or closing of a fishery. There are outstanding questions on the requirements of birds for food, location of potential sources of cockle brood stock for Morecambe Bay and cockle survivability of juvenile cockle is highly reliant on environmental factors. Given these uncertainties and the low levels of juvenile stock across Morecambe Bay in comparison to previous years, the low total cockle biomass compared to previous years, and that there are very few areas with high densities of adult cockle stock, we cannot recommend that the Morecambe Bay cockle beds are opened on 1st September 2022. Closing the fishery would aim to allow adult cockles that survive the winter, the opportunity to spawn in 2023 and contribute to a following years fishery. Annex 1. Cockle survey results

#### Aldingham and Newbiggin Cockle Survey 01-07-22

Officers present: ID, MB, AP, JH Tides: LW 07:53 2.0m (Liverpool Tides)

Survey method - Jumbo and 0.5m<sup>2</sup> quadrat

56 stations were sampled from a 500m grid. Most of the Aldingham survey location could not be accessed due to the Leven channel being closer to the shoreline. There was a wide range of cockle sizes across the bed from less than 5mm to greater than 35mm cockle. Cockle densities were relatively low across the bed. There were signs of a 2022 cockle settlement in some areas.

#### Means

Means were calculated from all stations with zero counts on the edge of the bed removed. Less than 5mm cockle was not used in the undersize figures due to the high variable survivability of cockle at this small size but has been included as a separate figure.

#### Newbiggin:

| Mean number of size cockle<br>Mean number of undersize cockle<br>Mean number of 0-5mm cockle | 8 per m²<br>10 per m²<br>35 per m² | (min 0, max 58)<br>(min 0, max 44)<br>(min 0, max 800) |
|----------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------|
| Aldingham:                                                                                   |                                    |                                                        |
| Mean number of size cockle                                                                   | 6 per m <sup>2</sup>               | (min 0, max 12)                                        |
| Mean number of undersize cockle                                                              | 9 per m <sup>2</sup>               | (min 0, max 62)                                        |
| Mean number of 0-5mm cockle                                                                  | 2 per m <sup>2</sup>               | (min 0, max 6)                                         |

#### Maps

Maps were created showing the overall survey area, density of size cockle, density of undersize cockle (excluding cockles in the 0-5mm size range) the density of the 0-5mm size class and the frequency of size classes, excluding 0-5mm (pie charts show the frequency of different size classes, the size of the pie chart indicates the total density of cockles present).

#### **Biomass**

|           | Area (ha) | Size Cockle (tonnes) <sup>1</sup> | Undersize Cockle<br>(tonnes) <sup>2</sup> |
|-----------|-----------|-----------------------------------|-------------------------------------------|
| Newbiggin | 990       | 800-1000                          | 200-300                                   |
| Aldingham | 73        | 50                                | 15                                        |

<sup>1</sup>In regards to biomass size cockle defined as cockle which will not pass through a square gauge 20 x 20mm in size.



Illustration of position of Aldingham and Newbiggin Survey Area



Density of size cockle per m<sup>2</sup> Aldingham and Newbiggin July 2022



Density of undersize cockle per m<sup>2</sup> Aldingham and Newbiggin July 2022



Density of 0-5mm cockle per m<sup>2</sup> Aldingham and Newbiggin July 2022



#### Flookburgh Cockle Survey 12-07-22

| Officers present: | ID, MB, AG, AP, JH              |
|-------------------|---------------------------------|
| Tides:            | LW 17:23 1.7m (Liverpool Tides) |

Survey method - Jumbo and 0.5m<sup>2</sup> quadrat

139 stations were sampled from a 500m grid. There was a wide range of cockle sizes across the bed from < 5mm to > 35mm. There was a large area in the middle of the surveyed area where there were no cockles which has been removed from the bed area. There is evidence of a 2022 settlement, with some areas of high spat numbers. Where spat is present but no other year classes of cockle where recorded have been removed from the bed area. Cockle density is relatively low across the bed other than cockle spat.

#### Means

Means were calculated from all stations with zero counts on the edge of the bed removed. Less than 5mm cockle was not used in the undersize figures due to the high variable survivability of cockle at this small size but has been included as a separate figure.

Mean number of size cockle Mean number of undersize cockle Mean number of 0-5mm cockle 4 per m<sup>2</sup> (min 0, max 46) 7 per m<sup>2</sup> (min 0, max 60) 185 per m<sup>2</sup> (min 0, max 4000)

#### Maps

Maps were created showing the overall survey area, density of size cockle, density of undersize cockle (excluding cockles in the 0-5mm size range) the density of the 0-5mm size class and the frequency of size classes, excluding 0-5mm (pie charts show the frequency of different size classes, the size of the pie chart indicates the total density of cockles present).

#### **Biomass**

|            | Area (ha) | Size Cockle (tonnes) <sup>1</sup> | Undersize Cockle<br>(tonnes) <sup>2</sup> |
|------------|-----------|-----------------------------------|-------------------------------------------|
| Flookburgh | 2240      | 650-850                           | 500-600                                   |

<sup>1</sup>In regards to biomass size cockle defined as cockle which will not pass through a square gauge 20 x 20mm in size.



Illustration of position of Flookburgh Survey Area

| Flookburgh    | Cockle Survey  | y 12-07-22         |               |              | ~~~~               | Garran Barr | S          |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|----------------|--------------------|---------------|--------------|--------------------|-------------|------------|------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                | See al.<br>See al. |               | мо           | R E C<br>B A       | AMBE<br>Y 0 |            |            | 2 4                                              | Morec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0<br>•         | 0<br>•             | 0 0<br>• •    | 0<br>•       | 0 0<br>• •         | 0 0         | • 4        | 0 0        | 0 4                                              | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | 0<br>•         | ·                  | • •           | ·            | 0 0                | 0 0         | 4 0        | 0 2<br>• • | 2 2                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | •              | •                  | 6 2<br>• •    | •            | 0 0                | 0 0         | 2 6        | 0 2        | 2 0                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | (•             | 4<br>7 8           | • •           | 0<br>-<br>46 |                    | • •         |            |            | 2                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | 0              | 10                 | • • •<br>• •  | 2<br>•       | 8 2<br>•           |             |            |            |                                                  | n and a second sec |
|               | 8              | 8                  | 12 0<br>•     | 0            | 0 0                | • •         | 4 2<br>• • | 5          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 2              | •                  | 2 6<br>2 8    | 6<br>●<br>2  | 0 4<br>• ●<br>2 12 |             | ) •        |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | •              | 2                  | 2 12          | 8<br>8       |                    |             |            |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 2<br>4         |                    | 2 4<br>2 0    | •            | 0.                 |             |            |            | Density of Size Cockle<br>no. per m <sup>2</sup> | t<br>j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | C              |                    | 9             |              |                    |             |            | 10         | 26 to 50 (1)<br>1 to 25 (60)<br>0 (78)           | 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Contains OS d | ata © Crown co | pyright and        | database righ | nts [2022]   | OS [010005         | 3667]       |            |            | Cockle Bed Area                                  | 2166 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Density of size cockle per m<sup>2</sup> Flookburgh July 2022.

| Flookburgh (  | Cockle Survey   | / 12-07-22  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.                 |              | Gana     |                     |                   |                                                                                             |                                                                        |
|---------------|-----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|----------|---------------------|-------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|               |                 | Sec. 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | мо                 | R E C<br>B A | АМВ<br>Y | Е<br>0<br>•         | ( <sup>16</sup> 4 |                                                                                             | 0 0                                                                    |
|               | 0<br>•          | 0<br>•      | 0 0<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>•             | 0<br>•       | 2 0<br>• | 0                   | 0 6<br>• •        | 0 0                                                                                         | 0 0                                                                    |
|               | 0<br>•          | 6           | 0 4<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) °                | 0<br>•       | • •      | 0<br>•              | 6 4<br>● 4        | 0 10<br>• •                                                                                 | 0. 8<br>. 8                                                            |
|               | •               | 2           | 26 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                  | 0<br>•       | • •      | •                   | 4 2<br>• •        | 16 0                                                                                        | 0 0<br>• •                                                             |
|               |                 | 20<br>●     | 10 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 \<br><b>2</b> 2 | •            | • •      | 4                   | 2 0<br>• •        | 10 10<br>● ●                                                                                | •                                                                      |
|               | •               | ●<br>       | ž ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                  | 8            |          | 0.                  | M 40 R 6          | $A \oplus A \oplus$ |                                                                        |
|               |                 | 4           | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                  | 14           |          | •                   | 6 0<br>● •        | ·                                                                                           |                                                                        |
|               | -<br>0          | ē           | • •<br>2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                  |              |          | 6                   | • •               | )                                                                                           |                                                                        |
|               | •               | •           | <ul> <li>•</li> <li>•</li></ul> | <b>8</b>           | €0 2         |          | $\bigcup_{i=1}^{n}$ | •                 |                                                                                             |                                                                        |
|               |                 | •           | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ<br>10            |              |          | ·                   |                   |                                                                                             |                                                                        |
|               |                 | 6           | • •<br>8 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                  | •            |          |                     |                   |                                                                                             | Density of Undersize Cockle                                            |
|               | 0               | 0           | 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                  | •            |          |                     |                   |                                                                                             | no. per m <sup>2</sup><br>51 to 100 (1)                                |
|               | Ċ               |             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                  |              |          |                     |                   |                                                                                             | <ul> <li>26 to 50 (4)</li> <li>1 to 25 (61)</li> <li>0 (73)</li> </ul> |
| Contains OS d | ata © Crown cor | ovright and | database ric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nhts [2022         | ] OS [01000  | 536671   | н                   |                   |                                                                                             | Cockle Bed Area 2166 ha                                                |

Density of undersize cockle per m<sup>2</sup> Flookburgh July 2022.

| Flookburgh (   | Cockle Survey  | / 12-07-2        | 2        | K             | $\sim$   |          | ~           | Garran | ).       |     |            |     |       |       |                                            |                        |
|----------------|----------------|------------------|----------|---------------|----------|----------|-------------|--------|----------|-----|------------|-----|-------|-------|--------------------------------------------|------------------------|
|                |                | 28-84<br>Chipat  |          |               | мо       | R E<br>B | C A<br>A Y  | ME     | B E<br>0 | (•  | 200        | 320 | 4.000 | 0     | °.                                         | Morec                  |
|                | 0<br>•         | 0<br>•           | 0<br>•   | 0<br>•        | 0<br>•   | 0<br>•   | 0<br>•      | 0<br>• | 0<br>•   | 0   | 180        | 0   | 1,600 | 0     | 0.                                         |                        |
|                | 0<br>•         | 100              | •        | 100           | 400<br>● | 0<br>•   | 0<br>•      | 0<br>• | 0<br>•   | 400 | 1,000      | •   | 8.200 | 0     | •                                          |                        |
|                | •              | 100              | 176      | 320           | •        | 0        | 0           | 0<br>• | 0        | •   | 400<br>●   | 400 | 0     | •     | 0.                                         |                        |
|                |                | 44<br>●<br>□ 280 | 1,000    | •             | •        | ·        | •           | 0      | •        | •   | 400        | 100 | •     | ·     |                                            |                        |
|                | •              | 600              | 0        | •             | •        | •        | •<br>200    |        | 0        | 42  | K 0⊏<br>•B | A Y | •     | -     |                                            |                        |
|                | 96             | end<br>Mar       | •        | •             | •        | •<br>0   | •           | ) •    | 16       | 0   | •          | •   | )     |       |                                            | 1 mars                 |
|                | 0              | •<br>0           | •<br>0   | •<br>480<br>● | 80<br>•  | 240      | •<br>0<br>• | •      | 0        | •   | •          | )   |       |       |                                            |                        |
|                |                | 96<br>●          | 136<br>● | 0<br>•        | 64<br>●  | 64<br>●  | 4           | ) •    | 0.       | ·   |            |     |       |       |                                            |                        |
|                | 0              | •                | 0<br>•   | 0<br>•        | 288<br>● | °        | 0           |        |          |     |            |     |       | Dens  | ity of 0-5mm Si                            | ze Class               |
|                | •              | 32               | 88<br>•  | •             | ·        | 0        |             |        |          |     |            |     |       | no. p | er m <sup>2</sup><br>2,001 to 4,000        | ) (2)                  |
|                | •              | 16<br>●          | 50<br>•  | •             | •        |          | /           |        |          |     |            |     |       | Ĭ     | 1,001 to 2,000<br>501 to 1,001<br>1 to 500 | ) (1)<br>(5)<br>) (36) |
| Contains OS da | ata © Crown co | pyright an       | d databa | ise rights    | [2022]   | OS [01   | 000536      | 667]   | н        |     |            |     |       |       | 0<br>Cockle Bed A                          | (95)<br>rea 2166 ha    |

Density of 0-5mm cockle per m<sup>2</sup> Flookburgh July 2022.



Frequency of size classes of cockle per m<sup>2</sup> Flookburgh July 2022.

#### Leven Cockle Survey 13-07-22

Officers present: ID, MB, JH Tides: LW 18:18 1.4m (Liverpool Tides)

76 stations were sampled from a 500m grid. here was a wide range of cockle sizes across the bed from < 5mm to > 35mm. The densities of both size and undersize cockle across the bed were relatively low. Size cockle were present across the surveyed area. There is evidence of a 2022 settlement, with some areas of high spat numbers. Where spat is present but no other year classes of cockle where recorded have been removed from the bed area. Cockle density is relatively low across the bed other than cockle spat.

#### Means

Means were calculated from all stations with zero counts on the edge of the bed removed. Less than 5mm cockle was not used in the undersize figures due to the high variable survivability of cockle at this small size but has been included as a separate figure.

| Mean number of size cockle      | 5 per m <sup>2</sup>   | (min 0, max 16)   |
|---------------------------------|------------------------|-------------------|
| Mean number of undersize cockle | 6 per m <sup>2</sup>   | (min 0, max 28)   |
| Mean number of 0-5mm cockle     | 131 per m <sup>2</sup> | (min 0, max 2000) |

#### Maps

Maps were created showing the overall survey area, density of size cockle, density of undersize cockle (excluding cockles in the 0-5mm size range) the density of the 0-5mm size class and the frequency of size classes, excluding 0-5mm (pie charts show the frequency of different size classes, the size of the pie chart indicates the total density of cockles present).

#### Biomass

Due to the lack of cockles on Leven and that there is no clear boundary been Flookburgh and Leven cockle beds, length weight data has been combined and used for Leven.

|       | Area (ha) | Size Cockle (tonnes) <sup>1</sup> | Undersize Cockle<br>(tonnes) <sup>2</sup> |
|-------|-----------|-----------------------------------|-------------------------------------------|
| Leven | 1047      | 400-500                           | 200-225                                   |

<sup>1</sup>In regards to biomass size cockle defined as cockle which will not pass through a square gauge 20 x 20mm in size.



Illustration of position of Leven Survey Area



Density of size cockle per m<sup>2</sup> Leven July 2022



Density of undersize cockle per m<sup>2</sup> Leven July 2022



Density of 0-5mm cockle per m<sup>2</sup> Leven July 2022



Frequency of size classes of cockle per m<sup>2</sup> Leven July

#### Middleton Cockle Survey 25-07-22

Officers present:AP, AG, MBTides:LW 16:242.9m (Liverpool tides)

Survey method - Jumbo and 0.5m<sup>2</sup> quadrat

80 stations were sampled from a 350m grid. There was a wide range of cockle sizes across the bed from < 5mm to > 35mm. There is evidence of a 2022 settlement. Where spat is present but no other year classes of cockle where recorded have been removed from the bed area. Cockle density is relatively low across the bed.

#### Means

Means were calculated from all stations with zero counts on the edge of the bed removed. Less than 5mm cockle was not used in the undersize figures due to the high variable survivability of cockle at this small size but has been included as a separate figure.

| Mean number of size cockle      | 5 per m <sup>2</sup>  | (min 0, max 18)  |
|---------------------------------|-----------------------|------------------|
| Mean number of undersize cockle | 14 per m <sup>2</sup> | (min 0, max 86)  |
| Mean number of 0-5mm cockle     | 7 per m <sup>2</sup>  | (min 0, max 120) |

#### Maps

Maps were created showing the overall survey area, density of size cockle, density of undersize cockle (excluding cockles in the 0-5mm size range) the density of the 0-5mm size class and the frequency of size classes, excluding 0-5mm (pie charts show the frequency of different size classes, the size of the pie chart indicates the total density of cockles present).

#### **Biomass**

|                 | Area (ha) | Size Cockle (tonnes) <sup>1</sup> | Undersize Cockle<br>(tonnes) <sup>2</sup> |
|-----------------|-----------|-----------------------------------|-------------------------------------------|
| Middleton Sands | 771       | 250-350                           | 350-450                                   |

<sup>1</sup>In regards to biomass size cockle defined as cockle which will not pass through a square gauge 20 x 20mm in size.



Illustration of position of Middleton Sands cockle bed



Density of size cockle per m<sup>2</sup> Middleton Sands July 2022



Density of undersize cockle per m<sup>2</sup> Middleton Sands July 2022



Density of 0-5mm cockle per m<sup>2</sup> on Middleton Sands July 2022



Frequency of size classes of cockle per m

### Pilling Sands Cockle Survey 20-07-22

Officers present: AP, JH, AG Tides: LW 11:38 2.0m (Liverpool tides)

Survey method - Jumbo and 0.5m<sup>2</sup> quadrat

80 stations were sampled from a 500m grid. Three additional stations was added to ensure full coverage of the cockle bed. There was a wide range of cockle sizes across the bed from < 5mm to > 35mm. There was a relatively low density of size cockle across much of the bed. There is evidence of a 2022 settlement, with some areas of high spat numbers. Where spat is present but no other year classes of cockle where recorded have been removed from the bed area. Cockle density is relatively low across the bed other than cockle spat.

#### Means

Means were calculated from all stations with zero counts on the edge of the bed removed. Less than 5mm cockle was not used in the undersize figures due to the high variable survivability of cockle at this small size but has been included as a separate figure.

| Mean number of size cockle      | 7 per m <sup>2</sup>  | (min 0, max 28)  |
|---------------------------------|-----------------------|------------------|
| Mean number of undersize cockle | 9 per m <sup>2</sup>  | (min 0, max 42)  |
| Mean number of 0-5mm cockle     | 76 per m <sup>2</sup> | (min 0, max 800) |

#### Maps

Maps were created showing the overall survey area, density of size cockle, density of undersize cockle (excluding cockles in the 0-5mm size range) the density of the 0-5mm size class and the frequency of size classes, excluding 0-5mm (pie charts show the frequency of different size classes, the size of the pie chart indicates the total density of cockles present).

#### Biomass

|               | Area (ha) | Size Cockle (tonnes) <sup>1</sup> | Undersize Cockle<br>(tonnes) <sup>2</sup> |
|---------------|-----------|-----------------------------------|-------------------------------------------|
| Pilling Sands | 1461      | 1000-1200                         | 300-400                                   |

<sup>1</sup>In regards to biomass size cockle defined as cockle which will not pass through a square gauge 20 x 20mm in size.



Illustration of position of Pilling Sands Survey Area



Density of size cockle per m<sup>2</sup> at Pilling Sands July 2022



Density of undersize cockle per m<sup>2</sup> at Pilling Sands July 2022



Density of 0-5mm cockle per m<sup>2</sup> at Pilling Sands July 2022



Frequency of size classes of cockle per m<sup>2</sup> at Pilling Sands July 2022

# Annex 2.

# Density per m<sup>2</sup>

| Aldingham and newbiggn |      |      | mean |      |      |
|------------------------|------|------|------|------|------|
|                        | 2018 | 2019 | 2020 | 2021 | 2022 |
| size                   | 10   | 7    | 19   | 10   | 8    |
| undersize              | 200  | 46   | 19   | 7    | 10   |
| spat                   | 14   | 117  | 131  | 1    | 35   |

| Aldingham Newbiggin |      |      |      |      |      |
|---------------------|------|------|------|------|------|
| max                 |      |      |      |      |      |
|                     | 2018 | 2019 | 2020 | 2021 | 2022 |
| size                | 44   | 32   | 84   | 42   | 58   |
| undersize           | 2238 | 404  | 194  | 62   | 44   |
| spat                | 14   | 1500 | 2000 | 4    | 800  |

| Flookburgh |      |      | mean |      |      |
|------------|------|------|------|------|------|
|            | 2018 | 2019 | 2020 | 2021 | 2022 |
| size       | 7    | 7    | 12   | 4    | 4    |
| undersize  | 267  | 61   | 28   | 7    | 7    |
| spat       | 50   | 0    | 29   | 2    | 185  |

| Flookburgh |      |      | max  |      |      |
|------------|------|------|------|------|------|
|            | 2018 | 2019 | 2020 | 2021 | 2022 |
| size       | 70   | 156  | 76   | 28   | 46   |
| undersize  | 3600 | 990  | 894  | 36   | 60   |
| spat       | 600  | 8    | 624  | 40   | 4000 |

| Leven     |      |      | mean |      |      |
|-----------|------|------|------|------|------|
|           | 2018 | 2019 | 2020 | 2021 | 2022 |
| size      | 11   | 4    | 18   | 5    | 5    |
| undersize | 5    | 50   | 21   | 11   | 6    |
| spat      |      | 0    | 46   | 3    | 131  |

| Leven     |      |      | max  |      |      |
|-----------|------|------|------|------|------|
|           | 2018 | 2019 | 2020 | 2021 | 2022 |
| size      | 38   | 24   | 80   | 22   | 16   |
| undersize | 13   | 172  | 576  | 58   | 28   |
| spat      |      | 0    | 1600 | 30   | 2000 |

| Pilling   |      |      | Mean |      |      |
|-----------|------|------|------|------|------|
|           | 2018 | 2019 | 2020 | 2021 | 2022 |
| size      | 21   | 8    | 17   | 17   | 7    |
| undersize | 112  | 43   | 16   | 5    | 9    |
| spat      |      | 33   | 38   | 0    | 76   |

| Pilling   |      |      | max  |      |      |
|-----------|------|------|------|------|------|
|           | 2018 | 2019 | 2020 | 2021 | 2022 |
| size      | 192  | 104  | 148  | 120  | 28   |
| undersize | 762  | 308  | 140  | 44   | 42   |
| spat      |      | 480  | 2000 | 0    | 800  |

| Warton |           |      | mean |      |      |
|--------|-----------|------|------|------|------|
|        |           | 2019 | 2020 | 2021 | 2022 |
|        | size      | 13   | 100  | 74   |      |
|        | undersize | 720  | 1203 | 17   |      |
|        | spat      | 22   |      |      |      |

| Warton |           |      | max  |      |      |
|--------|-----------|------|------|------|------|
|        |           | 2019 | 2020 | 2021 | 2022 |
|        | size      | 100  | 130  | 230  |      |
|        | undersize | 2030 | 4120 | 38   |      |
|        | spat      | 200  |      |      |      |

| Middleton |      |      | mean |      |      |
|-----------|------|------|------|------|------|
|           | 2018 | 2019 | 2020 | 2021 | 2022 |
| size      | 473  | 7    | 5    | 7    | 5    |
| undersize | 7    | 17   | 7    | 4    | 14   |
| spat      | 3    | 0    | 2    | 1    | 7    |

| Middleton |      |      | max  |      |      |
|-----------|------|------|------|------|------|
|           | 2018 | 2019 | 2020 | 2021 | 2022 |
| size      | 492  | 52   | 22   | 44   | 18   |
| undersize | 32   | 142  | 58   | 22   | 86   |
| spat      | 16   | 0    | 100  | 4    | 120  |

## **Biomass of cockle**

|               | 2017  | 2018  | 2019  | 2020  | 2021 | 2022 |
|---------------|-------|-------|-------|-------|------|------|
| Aldingham and |       |       |       |       |      |      |
| newbiggin     |       | 2350  | 2320  | 3970  | 2200 | 1365 |
| Leven         | 2415  | 1290  | 2000  | 3800  | 850  | 725  |
| Flookburgh    | 4706  | 12300 | 6600  | 3800  | 1225 | 1450 |
| Pilling       | 3821  | 3200  | 2700  | 3300  | 2500 | 1600 |
| Warton        |       |       | 3465  | 1185  | 135  |      |
| Middleton     | 265   | 265   | 450   | 500   | 505  | 800  |
| all beds      | 11207 | 19140 | 17535 | 16555 | 7415 | 5940 |

|      | Newbiggin and<br>Aldingham |      |           |       |
|------|----------------------------|------|-----------|-------|
| Year | Size                       |      | undersize | total |
| 2017 | na                         |      | na        | na    |
| 2018 |                            | 900  | 1450      | 2350  |
| 2019 |                            | 820  | 1500      | 2320  |
| 2020 |                            | 3200 | 770       | 3970  |
| 2021 | -                          | 1900 | 300       | 2200  |
| 2022 | -                          | 1050 | 315       | 1365  |

|      | Flookburgh |      |           |       |
|------|------------|------|-----------|-------|
| Year | Size       |      | undersize | total |
| 2017 | 4          | 074  | 632       | 4706  |
| 2018 | 2          | 700  | 9600      | 12300 |
| 2019 | 1          | 700  | 4900      | 6600  |
| 2020 | 3          | 300  | 500       | 3800  |
| 2021 | 1          | .000 | 225       | 1225  |
| 2022 |            | 850  | 600       | 1450  |

|      | Leven |      |           |       |
|------|-------|------|-----------|-------|
| Year | Size  |      | undersize | total |
| 2017 |       | 2202 | 215       | 2417  |
| 2018 |       | 1200 | 90        | 1290  |
| 2019 |       | 500  | 1500      | 2000  |
| 2020 |       | 3100 | 700       | 3800  |
| 2021 |       | 700  | 150       | 850   |
| 2022 |       | 500  | 225       | 725   |

|      | Pilling |     |           |       |
|------|---------|-----|-----------|-------|
| Year | Size    |     | undersize | total |
| 2017 |         | 571 | 3250      | 3821  |

| 2018 | 2200 | 1000 | 3200 |
|------|------|------|------|
| 2019 | 1200 | 1500 | 2700 |
| 2020 | 2400 | 900  | 3300 |
| 2021 | 2300 | 200  | 2500 |
| 2022 | 1200 | 400  | 1600 |

|      | Middleton |           |       |
|------|-----------|-----------|-------|
| Year | Size      | undersize | total |
| 2017 | na        | na        | 265   |
| 2018 | na        | na        | 0     |
| 2019 | 35        | 50 100    | 450   |
| 2020 | 30        | 0 200     | 500   |
| 2021 | 45        | 55        | 505   |
| 2022 | 35        | 60 450    | 800   |

|      | Warton |           |       |
|------|--------|-----------|-------|
| Year | Size   | undersize | total |
| 2017 | na     | na        | na    |
| 2018 | na     | na        | na    |
| 2019 | 65     | 3400      | 3465  |
| 2020 | 280    | 905       | 1185  |
| 2021 | 110    | 25        | 135   |
| 2022 | na     | na        | na    |